

The Spatio-Temporal Behaviour of Groundwater in The West Singhbhum District, Jharkhand

Simion Soren

Research Scholar, Ph.D. in Geography, Sona Devi University, Ghatshila, East Singhbhum, Jharkhand.

Corresponding Author email- simionsoren007@yahoo.com

ABSTRACT

This study examines the spatio-temporal behaviour of groundwater in the West Singhbhum district of Jharkhand, a hard-rock and miningdominated region where groundwater is the primary source of drinking, domestic, agricultural, and industrial supply. Using seasonal groundwater-level records, physicochemical data and GIS-based spatial analysis, the study evaluates how groundwater quantity and quality vary across locations and between pre- and post-monsoon periods. Findings show clear seasonal fluctuations, with significant pre-monsoon decline in mining and densely populated zones, while display comparatively stable water levels. forested uplands Groundwater quality is largely moderate to good, but pockets of poor quality appear near mining belts due to elevated iron, manganese, nitrate, fluoride, hardness, and TDS. Spatial clustering of contamination highlights the influence of land use, lithology, and anthropogenic activities. The study provides a comprehensive districtlevel understanding of groundwater dynamics and offers a scientific basis for targeted recharge planning, pollution mitigation, and sustainable groundwater management in West Singhbhum.

Keywords: Groundwater, Spatio-Temporal Variation, West Singhbhum, Mining Impact, Water Quality, GIS Analysis.

I. Introduction

Groundwater is one of the most dependable and extensively utilized freshwater resources for drinking, domestic, agricultural, mining, and industrial activities, especially in hard-rock terrains and rain-fed regions such as Jharkhand. In such physiographic environments, limited surface-water storage, erratic monsoon rainfall, and weak water-supply infrastructure make aquifers the primary foundation of water security for both rural and urban communities (Pramanik et al., 2021; Mali et al., 2020). However, rapid population growth, unplanned urbanisation, expansion of mining activities, intensive agricultural pumping, and emerging hydro-climatic variability have increasingly disrupted the balance between groundwater recharge and extraction. These pressures have altered both the quantity and quality of groundwater in Jharkhand, raising significant concerns about long-term sustainability (Mishra & Lal, 2023; Singh et al., 2018).

Recent hydrogeochemical studies reveal that Jharkhand faces a critical dual challenge—groundwater depletion and water-quality deterioration. At the state level, Gupta and Maiti (2025) documented widespread groundwater contamination arising from both geogenic factors (such as mineral dissolution, rock-weathering, lithology) and anthropogenic activities (including agriculture, industrial effluents, and mining). Using an Integrated Water Quality Index (IWQI) based on expert judgement and entropy-weighting of 545 samples, they found that although nearly half of the samples fell in the "excellent" category and a substantial portion in the "good" range, a concerning fraction ranged from moderate to extremely poor quality. Elevated fluoride, nitrate, and sulphate emerged as the most critical contaminants, posing risks of fluorosis, skeletal deformities and methemoglobinaemia. Fluoride enrichment was most pronounced in Palamu, Garhwa, Ranchi, Giridih, Bokaro, and parts of Dhanbad and Jamtara, driven by gypsum dissolution, evaporite weathering, and halite pollution (Gupta & Maiti, 2025).

Parallel research on rainfall-groundwater interactions demonstrates that spatio-temporal variability in precipitation strongly governs groundwater behaviour. Analysing rainfall and groundwater levels across 11 districts for the period 2001–2020, Kumar et al. (2025) reported significant spatial variability in monsoon rainfall, ranging from 650–1250 mm, and pre-monsoon rainfall between 25–175 mm. Higher precipitation was observed in Simdega, Lohardaga and Latehar, whereas Garhwa and Palamu remained persistently low-rainfall zones. Their trend analysis using the Mann–Kendall test and Sen's slope revealed negative rainfall trends in seven districts (up to –6.8 mm/year). This was accompanied by declining pre-monsoon groundwater levels in Palamu, East Singhbhum and Khunti, whereas Simdega, Ranchi and parts of West Singhbhum exhibited improving groundwater trends. These results highlight the heterogeneous nature of groundwater behaviour in Jharkhand and underline the need for district-specific evaluations (Kumar et al., 2025; Swain et al., 2022).

Groundwater contamination associated with mining activities adds further complexity to this issue. Several studies conducted in the coal, iron and mica mining belts of Jharkhand have shown that dissolved solids, major ions, and heavy metals frequently exceed drinking-water standards (Giri et al., 2023; Kumar et al., 2023). In mica-mining regions, Giri et al. (2025) found that nitrate, fluoride, calcium, magnesium, and total hardness exceeded BIS limits in many samples. Although a portion of the samples fell within "good" WQI ranges, nearly 29% were classified as "poor." Metal contamination studies further indicate that aluminium (Al), iron (Fe) and manganese (Mn) often surpass safe limits, with Hazard Index (HI) values for children exceeding 1 in certain seasons, signalling significant non-carcinogenic risks (Giri et al., 2023). Industrial belts such as Bokaro and Ramgarh also report elevated hardness, fluoride, chloride, bicarbonate, and heavy metals, although some areas remain suitable for domestic and irrigation use due to natural dilution and recharge processes (Yadav et al., 2024; Kumar et al., 2022).

Alongside contamination studies, geospatial analyses have enhanced understanding of groundwater potential and quality. Murmu et al. (2019) delineated groundwater potential zones in Dumka using an integrated remote sensing–GIS–AHP approach, identifying 11% of the district as "very good," with moderate-to-good zones covering nearly 80% of the area. Kumari and Krishna (2025) applied machine-learning models Random Forest (RF), Support Vector Machine (SVM), and Generalized Linear Model (GLM) and found RF to achieve the highest predictive accuracy (96%) for groundwater potential zoning

in Ranchi district. These studies emphasise the strength of geospatial and data-driven tools in analysing complex hydrogeological variables such as slope, drainage density, lithology, soil type, land use/land cover (LU/LC) and lineament density. Comparable studies in Dumka, Hazaribag and Bokaro demonstrate that 70–80% of samples in some areas fail to meet drinking-water standards without treatment due to high levels of TDS, hardness, heavy metals, or arsenic (Srivastava & Srivastava, 2025; Kumar & Srivastava, 2024; Verma et al., 2020; Kumar & Pati, 2022).

Nitrate and fluoride contamination remain persistent challenges in various districts of Jharkhand. Gautam et al. (2021) observed nitrate concentrations as high as 250–260 mg/L along the Subarnarekha River, with nearly 44% of sites falling into unsafe zones. In Gharbar, Thapa et al. (2019) reported fluoride reaching ~18.5 mg/L and nitrate up to 319 mg/L—levels far exceeding permissible limits. Studies in Chandwara and other blocks show that 60–70% of samples exceed permissible limits for iron and hardness, with Monte Carlo—based health-risk assessments indicating significant non-carcinogenic risks from fluoride and iron ingestion (Pramanik & Chatterjee, 2021; Pramanik et al., 2021).

Despite Jharkhand possessing substantial groundwater resources—estimated at 4.29 BCM—only about 15% of this resource is developed, leaving nearly 85% underutilized (Mali et al., 2020). However, this apparent availability masks local-level crises. Long-term groundwater-level assessments in Ranchi, Purbi Singhbhum and Saraikela reveal significant increases in depth-to-groundwater (i.e., water-table decline) over the past 20 years, especially during pre-monsoon seasons (Swain et al., 2022; Pratik & Patel, 2023). These findings reinforce the need for granular, district-level spatio-temporal assessments to design appropriate recharge, regulation, and conservation strategies.

Although a substantial body of hydrogeochemical and modelling research has been conducted in Jharkhand, a major research gap persists regarding the detailed spatio-temporal assessment of groundwater behaviour in the West Singhbhum district. Most studies focused on Ranchi, Dumka, Bokaro, Hazaribag, Dhanbad, Koderma and East Singhbhum do not adequately capture the hydrogeological complexities of West Singhbhum, which is characterised by extensive mining, forested uplands, tribal settlements, high geomorphological diversity and varied lithological formations (Giri et al., 2021; Singh et al., 2018; Murmu et al., 2019; Mishra & Lal, 2023). While limited evidence suggests improving postmonsoon groundwater trends in some parts of West Singhbhum (Kumar et al., 2025), a systematic spatio-temporal groundwater evaluation at the district level remains absent.

II. Reviews Study and Findings

Author &	Study Focus	Parameters	Findings	Implications
Year				
Gupta &	Statewide	545 samples;	~50% "Excellent", large share	Need for
Maiti (2025)	groundwater	Fluoride,	"Good"; some moderate-extremely	defluoridation,
	contamination;	nitrate, sulfate;	poor. • High fluoride in Palamu,	monitoring, and
	IWQI	Ca, EC, TH	Garhwa, Ranchi, Giridih, Bokaro,	fluoride-risk
			Dhanbad, Jamtara.	mitigation.
			Fluoride controlled by evaporite & gypsum dissolution, carbonate weathering.	

Kumar et al.	Rainfall-	Rainfall ranges:	Negative rainfall trends in 7 districts.	Region-specific
(2025)	groundwater	Pre-monsoon	5	recharge
	trends (11	25–175 mm;	Declining GW levels in Palamu, East	strategies
	districts, 2001–	Monsoon 650–	Singhbhum, Khunti.	needed;
	2020)	1250 mm. GW	,	promote RWH
	,	levels: 2–18 m.	Improving GW in Simdega, Ranchi,	& efficient
		Sen's slope: –	West Singhbhum, Latehar.	irrigation.
		6.8 mm/year.	<i>g</i> ,	8
Giri et al.	Mica mining	pH, EC, TDS,	High nitrate, fluoride, Ca, Mg, TH	Regular
(2025)	region	Ca, Mg, Na, K,	beyond BIS limits at many sites.	monitoring
	hydrochemistry	NO ₃ -, F-	, and the second	needed; risk of
	j	,	~29% samples "Poor".	nitrate/fluoride
			1	health impacts.
			PCA: Rock weathering dominant;	•
			mining/agriculture secondary.	
Kumari &	ML-based	ML Models:	RF highest accuracy (96%).	ML
Krishna	Groundwater	GLM, SVM,		outperforms
(2025)	Potential	RF; Accuracy:	Key variables: slope, drainage	traditional
	Zonation	76%–96%	density, lithology, LU/LC, rainfall,	MCDM; useful
	(Ranchi)		lineaments.	for hard-rock
				aquifer
				planning.
Srivastava	Hydro-geo-	61 samples;	Ca-Mg-Cl ₂ facies dominant.	Water quality
&	chemistry in	TDS ~182 ppm;		degradation
Srivastava	Dumka	EC ~366–358	Carbonate weathering & ion	increasing;
(2025)		μS/cm; pH 6.9	exchange major drivers.	urgent need for
				treatment
			Poor WQI in Jarmundi, Shikaripara,	measures.
			Jamua.	
Yadav et al.	Bokaro	pH 6.15–7.73;	Mostly suitable for	Industrial
(2024)	industrial belt		drinking/irrigation.	impact evident;
	water quality	μS/cm; SAR,	Some hotspots: high pH, hardness,	groundwater
		RSC, PI	fluoride, bicarbonate, nitrate.	largely
				protected by
				natural
				recharge.
Kumar &	Hazaribag	Metals: Zn > Fe	Strong rock-water interaction.	High treatment
Srivastava	groundwater—	> Mn $>$ Al $>$ Cr		priority; severe
(2024)	heavy metals	> As > Pb;	High metal contamination; Zn, Fe,	health-risk
		WQI: 72%	Mn dominant.	conditions.
		"Unsuitable"	***	
			HI indicates non-carcinogenic health	
			risks.	

Ambade et al. (2024)	Fluoride pollution (Eastern India)	Fluoride: 0.02– 2.7 mg/L (pre), 0.02–4.7 mg/L (post); 97% < 1.5 mg/L	Infants showed highest hazard quotient. Negative F–Ca ⁺² correlation.	Awareness needed despite low fluoride exceedances.
Mishra & Lal (2023)	Ranchi groundwater— metal pollution	WQI up to 100.95; MI up to 53.98; HPI up to 109.20	Severe contamination in Khelari, Bundu, Ormanjhi. Metals: Fe, Mn, Pb, As major contributors.	Rapid urbanisation degrading aquifers; urgent mitigation needed.
Giri et al. (2023)	Metals in mica mining belt	Fe, Mn exceed limits in 72%, 47%, 33% samples	Post-monsoon highest metal loads. \Children's HI: 1.17–1.18 (>1).	Moderate-high health risk for children; unsafe at many sites.
Pratik & Patel (2023)	GW-level fluctuation (Ranchi)	Depth-to-water table mapping & 3D visualization	Clear zones of over-extraction mapped.	Helps identify recharge vs. withdrawal zones.
Kumar et al. (2023)	Coalfield- region GW quality	Pre-monsoon good–excellent: 32%; Post- monsoon: 77%	Despite mining activity, most samples potable. Seasonal variation notable.	Recharge improves postmonsoon GW quality.
Giri et al. (2023)	Iron-mining region metal contamination	Fe & Mn exceed limits in ~75% samples	PCA: geogenic + mining impacts. Pre-monsoon HI: 1.16.	Children at elevated non-carcinogenic risk.
Kumar & Pati (2022)	Arsenic ML- based classification	ML: RF best performer	RF classifier accurately predicts arsenic hotspots.	Suitable for risk-based planning.
Swain et al. (2022)	Trend analysis using ITA	DGWL ↑ at 17 (pre) & 14 (post) sites	Rising DGWL = falling groundwater table.	Declining aquifers; ITA more reliable than MK test.
Kumar et al. (2022)	Industrial area heavy-metal study (Ramgarh)	$\begin{aligned} Fe &> Zn > Mn > \\ Al &> Ba > Ni > \\ Cu > \dots \end{aligned}$	Fe exceeded limit in all samples. Most samples low–medium HPI, HEI, Cd.	Mixed lithogenic + industrial contamination.
Kumar et al. (2022)	Arsenic contamination in Jharkhand	Max As: 1.5 mg/L (Sahibganj), 1.2 (Deoghar)	9/24 districts contaminated; mostly plateau region.	Arsenic widespread beyond Gangetic belt.
Pramanik et al. (2021)	State-level major ion review	Fluoride, arsenic, Fe widespread	Many regions lack safe drinking water.	Baseline for contamination mapping.

Gautam et	Nitrate	NO ₃ -: 0.2-	44% unsafe zone.	High nitrate-
al. (2021)	pollution	264.6 mg/L	44% unsafe zone.	driven disease
al. (2021)		204.0 mg/L		
	(Subarnarekha		A	risk.
	region)		Agriculture & industries main	
~			sources.	
Giri et al.	Fluoride &	F- up to 18.5	95% samples pose risk to children.	Very high
(2021)	nitrate in mica	mg/L; NO ₃ - up		ingestion risk.
	belt	to 319 mg/L		
Pramanik &	Chandwara	143 samples; Fe	High TDS, hardness, Ca; fluoride	Iron
Chatterjee	groundwater	exceedance:	safe.	contamination
(2021)	study	68%		dominant.
Pramanik et	Fluoride &	F ⁻ : 0.18–1.21	Non-carcinogenic risk significant.	Monitoring &
al. (2021)	iron health risk	mg/L; Fe >		defluoridation
		limits in 68%		required.
Mali et al.	Water	GW	85% unutilised GW potential.	Enormous
(2020)	resources &	availability:		scope for GW-
(====)	agriculture	4.29 BCM; GW		based irrigation.
	agricure.	development:		
		15%		
Raza (2020)	Urban GW	LU/LC, DEM,	Identified optimal sites for	Useful for
Raza (2020)	planning	weights applied	sustainable GW management.	urban planning.
	(Dhanbad)	weights applied	sustamable GW management.	urban planning.
Marrage et al		Mana	Due manage CW manage than most	Tuestusent
Verma et al.	Bokaro WQI	Many	Pre-monsoon GW poorer than post-	Treatment
Verma et al. (2020)		parameters >	Pre-monsoon GW poorer than post-monsoon.	necessary
	Bokaro WQI		•	necessary before drinking
(2020)	Bokaro WQI assessment	parameters > BIS limits	monsoon.	necessary before drinking use.
(2020) Murmu et al.	Bokaro WQI assessment GW potential	parameters > BIS limits AHP+GIS;	monsoon. Reliable delineation validated with	necessary before drinking use. Effective
(2020)	Bokaro WQI assessment	parameters > BIS limits AHP+GIS; Zones: Very	monsoon.	necessary before drinking use. Effective framework for
(2020) Murmu et al.	Bokaro WQI assessment GW potential	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good	monsoon. Reliable delineation validated with	necessary before drinking use. Effective
(2020) Murmu et al. (2019)	Bokaro WQI assessment GW potential (Dumka)	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38%	monsoon. Reliable delineation validated with well discharge.	necessary before drinking use. Effective framework for hard-rock areas.
(2020) Murmu et al. (2019) Thapa et al.	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55	monsoon. Reliable delineation validated with	necessary before drinking use. Effective framework for hard-rock areas. High
(2020) Murmu et al. (2019)	Bokaro WQI assessment GW potential (Dumka)	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–	monsoon. Reliable delineation validated with well discharge.	necessary before drinking use. Effective framework for hard-rock areas. High contamination
(2020) Murmu et al. (2019) Thapa et al. (2019)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk.
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al.	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01-18.55 mg/L; NO ₃ -: 34- 319 mg/L Wenner &	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures &	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves
(2020) Murmu et al. (2019) Thapa et al. (2019)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01-18.55 mg/L; NO ₃ -: 34-319 mg/L Wenner & Dipole-Dipole	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy.
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al.	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01-18.55 mg/L; NO ₃ -: 34-319 mg/L Wenner & Dipole-Dipole arrays Cr > As > Cd >	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures &	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in East	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays Cr > As > Cd > Pb (risk order)	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones. HI > 1 indicates high health risks.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones.
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum Bokaro	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01-18.55 mg/L; NO ₃ -: 34-319 mg/L Wenner & Dipole-Dipole arrays Cr > As > Cd > Pb (risk order) Seasonal GW	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones. Supports
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays Cr > As > Cd > Pb (risk order)	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones. HI > 1 indicates high health risks. Rock weathering dominant.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones. Supports agricultural
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride-nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum Bokaro hydrochemistry	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays Cr > As > Cd > Pb (risk order) Seasonal GW analysis	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones. HI > 1 indicates high health risks. Rock weathering dominant. Irrigation mostly suitable.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones. Supports agricultural water use.
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride–nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum Bokaro hydrochemistry Lineament–	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01-18.55 mg/L; NO ₃ -: 34-319 mg/L Wenner & Dipole-Dipole arrays Cr > As > Cd > Pb (risk order) Seasonal GW analysis NDVI, GDVI,	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones. HI > 1 indicates high health risks. Rock weathering dominant. Irrigation mostly suitable. Correlation between lineaments & GW	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones. Supports agricultural water use.
(2020) Murmu et al. (2019) Thapa et al. (2019) Bharti et al. (2019) Singh et al. (2018)	Bokaro WQI assessment GW potential (Dumka) Fluoride-nitrate mobilization ERT for aquifers Heavy metals in East Singhbhum Bokaro hydrochemistry	parameters > BIS limits AHP+GIS; Zones: Very good 11%, Good 38% F-: 0.01–18.55 mg/L; NO ₃ -: 34–319 mg/L Wenner & Dipole–Dipole arrays Cr > As > Cd > Pb (risk order) Seasonal GW analysis	monsoon. Reliable delineation validated with well discharge. F- geogenic; NO ₃ - anthropogenic. Identified water-saturated fractures & alluvium zones. HI > 1 indicates high health risks. Rock weathering dominant. Irrigation mostly suitable.	necessary before drinking use. Effective framework for hard-rock areas. High contamination risk. Improves aquifer detection accuracy. Critical contamination zones. Supports agricultural water use.

III. Proposed Solutions

- Spatial behaviour refers to how groundwater levels and quality vary across different locations within West Singhbhum (e.g., mining areas vs. forest areas vs. upland vs. valley zones).
- Temporal behaviour describes how groundwater changes over time, especially across seasons (pre-monsoon, monsoon, post-monsoon) and years (long-term trends).
- Groundwater levels in the district rise during monsoon due to recharge and decline in premonsoon due to high extraction and low rainfall.
- Water quality parameters (fluoride, nitrate, Fe, Mn, TDS) also show seasonal variation, often worsening in pre-monsoon and improving after rainfall dilution.
- Mining belts show higher contamination and deeper water tables compared to forested uplands or river-adjacent zones.
- Spatio-temporal analysis helps identify hotspots of depletion, contamination clusters, and zones with stable or improving trends.
- Understanding these spatial and temporal patterns supports targeted interventions, recharge planning, pollution control, and sustainable groundwater management.

IV. Conclusion

The study assessment of the spatio-temporal behaviour of groundwater in West Singhbhum reveals that the district's aquifer systems are shaped by strong seasonal fluctuations, diverse geological settings, and significant anthropogenic pressures. Groundwater levels show a distinct pattern of premonsoon decline and post-monsoon recovery, with the most pronounced depletion occurring in mining-dominated and densely inhabited zones. In contrast, forested uplands and less disturbed regions exhibit comparatively stable and shallow water tables, reflecting better recharge conditions and lower extraction stress. Groundwater quality in the district ranges from good to moderate in most areas; however, several pockets exhibit poor water quality due to elevated concentrations of iron, manganese, nitrate, fluoride, hardness, and TDS. These contamination clusters are strongly linked to mining activities, industrial influence, agricultural runoff, and settlement-related waste. The combined effect of declining levels and deteriorating water quality highlights the vulnerability of certain micro-regions within the district. Overall, the study demonstrates that understanding groundwater dynamics through a spatio-temporal lens is essential for designing targeted management strategies. Strengthened monitoring, regulated extraction, decentralised recharge structures, improved pollution control, and community-based water governance are necessary to ensure long-term sustainability. The findings suggested a scientific foundation for evidence-driven groundwater planning and can guide future hydrogeological and environmental interventions in West Singhbhum.

References

1. Gupta, S., & Maiti, S. (2025). Groundwater Quality and Fluoride Contamination Risks in Jharkhand State: A Regional IWQI Analysis and Hydrochemistry Insights. *Journal of Environmental Chemical Engineering*, 118253.

- 2. Kumar, R., Jalem, K., Swain, S. K., Kanga, S., Singh, S. K., Meraj, G., ... & Mandal, D. (2025). Spatio-temporal analysis of precipitation dynamics and groundwater recharge trends in Jharkhand, india: implications for water resource management. *Environmental Earth Sciences*, 84(22), 678.
- 3. Giri, S., Tiwari, A. K., Mahato, M. K., & Singh, A. K. (2025). Major ion chemistry and suitability of groundwater resources for different utilizations in mica mining areas, Jharkhand, India. *Geochemical Transactions*, 26(1), 5.
- 4. Kumari, R., & Krishna, A. P. (2025). Geospatial and Machine Learning Technique Based Zonation of Groundwater Potential: A Case Study of Ranchi District, Jharkhand, India. *Journal of the Indian Society of Remote Sensing*, 1-18.
- 5. Srivastava, M., & Srivastava, P. K. (2025). GIS-Based Hydro-Geo-Chemical Study of the Groundwater and Its Multivariate Statistical Assessment for Drinking and Irrigation Suitability in Dumka Region, Jharkhand, India. *International Journal of Environmental Research*, 19(4), 141.
- 6. Yadav, A. K., Singh, A. K., Chaturvedi, A., Kumar, D., Shukla, V., Kumar, S., & Kumar, N. (2024). Hydrochemical investigation of groundwater quality for drinking and irrigational purposes from industrial belt of Jharkhand, India. *Environmental Quality Management*, *33*(4), 611-622.
- 7. Kumar, N., & Srivastava, S. (2024). Studies on Hydrogeochemistry and Human Health Risks of Groundwater in Hazaribag City, Jharkhand, India. *International Journal of Ecology and Environmental Sciences*, 50(2), 285-302.
- 8. Ambade, B., Sethi, S. S., Patidar, K., Gautam, S., & Alshehri, M. (2024). Assessing variability and hydrochemical characteristics of groundwater fluoride contamination and its associated health risks in East Singhbhum district of Jharkhand, India. *Journal of Hazardous Materials*, 478, 135498.
- 9. Mishra, A., & Lal, B. (2023). Assessment of groundwater quality in Ranchi district, Jharkhand, India, using water evaluation indices and multivariate statistics. *Environmental Monitoring and Assessment*, 195(4), 472.
- 10. Giri, S., Bharat, A. P., & Singh, A. K. (2023). Metal contamination of groundwater in the mica mining areas of Jharkhand: assessing seasonal variation, sources and human health risk. *International Journal of Environmental Analytical Chemistry*, 103(19), 8281-8294.
- 11. Pratik, P., & Patel, P. P. (2023). Assessment of groundwater level fluctuations in and around Ranchi district, Jharkhand using geospatial datasets and methods. In *Case Studies in Geospatial Applications to Groundwater Resources* (pp. 341-371). Elsevier.
- 12. Kumar, A., Mishra, V. N., Ratnam, R., Pande, C. B., & Krishna, A. P. (2023). Assessment of groundwater quality in South Karanpura Coalfield Region, Jharkhand, India using WQI and geospatial approach. In *River Conservation and water resource management* (pp. 27-52). Singapore: Springer Nature Singapore.
- 13. Giri, S., Tiwari, A. K., Mahato, M. K., & Singh, A. K. (2023). Spatio-temporal variations of metals in groundwater from an iron mining impacted area: Assessing sources and human health risk. *Total Environment Research Themes*, 8, 100070.

- 14. Kumar, S., & Pati, J. (2022). Assessment of groundwater arsenic contamination level in Jharkhand, India using machine learning. *Journal of Computational Science*, 63, 101779.
- 15. Swain, S., Sahoo, S., Taloor, A. K., Mishra, S. K., & Pandey, A. (2022). Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. *Groundwater for Sustainable Development*, 18, 100783.
- 16. Kumar, S., Toppo, S., Kumar, A., Tewari, G., Beck, A., Bachan, V., & Singh, T. B. N. (2022). Assessment of heavy metal pollution in groundwater of an industrial area: a case study from Ramgarh, Jharkhand, India. *International Journal of Environmental Analytical Chemistry*, 102(18), 7290-7312.
- 17. Kumar, S., Lal, N., & Barik, S. K. (2022). A Review of Arsenic Contamination in Groundwater in Gangetic Plain as well asin Plateau Area of the Jharkhand State of India. *Journal of Water Engineering and Management*, 3(2), 01-10.
- 18. Pramanik, A. K., Das, S. K., & Chatterjee, A. (2021). A study on groundwater quality based on major ion chemistry of Jharkhand State in India: A review. *Oriental Journal of Chemistry*, *37*(4), 962.
- 19. Gautam, S. K., Singh, S. K., & Rawat, K. S. (2021). Intrinsic vulnerability evaluation of groundwater nitrate pollution along a course of the Subarnarekha River in Jharkhand, India. *Water Conservation Science and Engineering*, 6(2), 55-66.
- 20. Giri, S., Mahato, M. K., Singh, P. K., & Singh, A. K. (2021). Non-carcinogenic health risk assessment for fluoride and nitrate in the groundwater of the mica belt of Jharkhand, India. *Human and Ecological Risk Assessment: An International Journal*, 27(7), 1939-1953.
- 21. Pramanik, A. K., & Chatterjee, (2021). A. Mapping of Groundwater Quality and Consumption Pattern of a Community Development Block of Jharkhand State in India.
- 22. Pramanik, A. K., Hossain, M., Majumdar, D., & Chatterjee, A. (2021, July). Use of Monte Carlo Simulation for Non-carcinogenic Health Risk Assessment of Fluoride and Iron in Groundwater of a Block in Koderma District of India. In *International Conference BRICS NUs: Water Resources and Pollution Treatment* (pp. 165-177). Singapore: Springer Nature Singapore.
- 23. Mali, S. S., Jha, B. K., Naik, S. K., & Kumar, S. (2020). Agricultural Water Management in Jharkhand: Issues and Strategies. *Agriculture and Food*, 2(8).
- 24. Raza, R. (2020). Suitable Zone for Sustainable Ground Water Assessment in Dhanbad Block, Jharkhand, India. *Sustainable Development Practices Using Geoinformatics*, 215-228.
- 25. Verma, P., Singh, P. K., Sinha, R. R., & Tiwari, A. K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: a case study of the Bokaro district, India. *Applied Water Science*, 10(1), 27.
- 26. Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. *Groundwater for Sustainable Development*, 9, 100239.
- 27. Thapa, R., Gupta, S., Kaur, H., & Baski, R. (2019). Assessment of groundwater quality scenario in respect of fluoride and nitrate contamination in and around Gharbar village, Jharkhand, India. *HydroResearch*, 2, 60-68.

- 28. Bharti, A. K., Pal, S. K., Saurabh, Singh, K. K. K., Singh, P. K., Prakash, A., & Tiwary, R. K. (2019). Groundwater prospecting by the inversion of cumulative data of Wenner–Schlumberger and dipole–dipole arrays: A case study at Turamdih, Jharkhand, India. *Journal of Earth System Science*, 128(4), 107.
- 29. Singh, U. K., Ramanathan, A. L., & Subramanian, V. (2018). Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India. *Chemosphere*, 204, 501-513.
- 30. Singh, P. K., Verma, P., & Tiwari, A. K. (2018). Hydrogeochemical investigation and qualitative assessment of groundwater resources in Bokaro district, Jharkhand, India. *Arabian Journal of Geosciences*, 11(17), 483.
- 31. Sahoo, S., Das, P., Kar, A., & Dhar, A. (2018). A forensic look into the lineament, vegetation, groundwater linkage: study of Ranchi District, Jharkhand (India). *Remote Sensing Applications: Society and Environment*, 10, 138-152.